
1

Hub for Digital Communication

João Reis

Instituto Superior Técnico

Abstract
Many organizations use a POTS system in conjunction with a VoIP, this creates an availability problem

to system because the repair and replacement of the hardware that keeps the POTS system working is

very hard due to lack of spare parts on the market. Given this problem this work has the objective of

offering a backup system that allows the organization that implements it to keep functioning as normal

and at the same time offering extra features working as an extension of the existing system.

This problem can be solved using a system that integrates the new webRTC technology with the existing

VoIP technologies offering the future users of the system a Web application that allows them to do calls

without the need of any native code.

The system is composed of a Web server, an Asterisk PBX and an IVR server, the Web server is used

to deliver a WebApp, signaling server for WebRTC browsers and to set up users inside the Asterisk

server. The Asterisk PBX is used to connect the WebApp to the already existing SIP infrastructure and

the IVR server serves dynamic IVR menus to the users, the menus are written using NodeJS which

makes them easy to integrate with the webservices.

With this system the users can do all the operations that a real pone allows inside a browser, search

other users by name, review messages before sending and see all voicemail inside the browser.

Keywords: Voice over IP, WebRTC, Asterisk, NodeJS, Web development

1 Introduction

1.1 Motivation
With the expansion of the internet and the surging

of VoIP (Voice over IP) technology the old analog

and digital networks quickly became obsolete.

Their incapacity to compete against the quality

and convenience of the new technology as the

new services that it offers, because of this

incapacity to compete POTS networks started to

be slowly replaced by the new VoIP networks.

Unfortunately, the substitution of a POTS network

is a very expensive process that involves

acquisition of new phone terminals, new cables,

routers and switches. To cut on costs several

companies and organizations kept their POTS

networks working in parallel with their new VoIP

one using special hardware to connect them.

1.2 Problem
Nowadays a lot of organizations keep an old

POTS (Plain Old Telephone Service) network

and newer VoIP network. This network normally

has at its core a PBX (Private Branch Exchange)

server, the POTS network its connected to the

PBX with the help of an electronic central that’s

able to convert the old telephone signal into the

new format allowing communication between the

two networks as seen in Figure 1.

Asterisk

Electronic Central

VoIP Telephone

Figure 1 - Network POTS plus VoIP

Unfortunately, the electronic central were only

meant to be used during the first stages of VoIP

deployment and so not many were produced

making it very hard service one in 2018. This

2

creates a problem to all organizations that

depend on one since if it breaks the availability of

the service will be affected until a way to repair

the electronic central is found or a new network is

installed.

1.3 Solution
 A way to solve this problem is to develop backup

system using existing networks and devices to

make it cheap and easy to deploy. With current

technology using WebRTC is a good option, it

can be used from a desktop computer, a tablet or

a smartphone using the LAN (Local Area

Network) of the organization. Users using this

system can be authenticated using the OAuth

framework allowing also the WebRTC app to

obtain data to identify the user. Using OAuth

gives the application all it needs to run without

asking the user for any information making the

system extremely easy to setup requiring only a

simple login.

Sistema WebRTCPBX

SIP/RTP

Telefones VoIP

Central electrónica

Autenticação

Directório

HTTPS

Internet

Browsers

Figure 2 - Original network with the backup system

The backup system, that can be seen in Figure 2,

would allow users to communicate between

themselves directly using a pure WebRTC

implementation in which users send media

directly to each other without the need for a

proxy. In the case of contacts between WebRTC

system users and VoIP/POTS it will be required

the use of a proxy that in this case would be the

PBX server.

2 Related work

2.1 POTS
POTS or Plain Old Telephone Service are the old

telephone systems that used a cooper loop to

transmit its signals. This system needs a

dedicated physical link for each call making it

very inefficient and expensive. It was able to

acquire and transmit frequencies between 300Hz

and 3300Hz a very small window of the audible

sounds that vary between 20Hz and 20000Hz.

Although very a very inefficient and low-quality

system compared to the newer ones it was the

only one available for a long time which lead to a

large adoption all over the world.

2.2 SIP/SDP
SIP (Session Initiation Protocol [1]) it’s a text-

based signaling and control protocol for real-time

communications. Its normally used in VoIP

applications to start, manage and terminate a

call.

SIP is often used with SDP (Session Description

Protocol [2]), this protocol is send inside the body

of SIP message at the start of a call and is used

to negotiate codecs bitrates and other relevant

session parameters. SDP is also a text-based

protocol that can be used independently from SIP

if desired.

2.3 VoIP
VoIP (Voice over IP) is the transmission of real-

time audio or video from a call through a network

that uses the internet protocol (IP). To achieve

VoIP a lot of technologies can be used, in the

case of terminals we can use softphones on a

computer, a browser using WebRTC or

compatible telephone. The transmission over the

IP network his made using an RTP [3] or SRTP

[4] protocol over the transport protocol that is

normally UDP (User Datagram Protocol).

2.4 WebRTC
The WebRTC is composed of three API’s that

allow access to the devices, create a direct

connection between end-users and creation of a

data channel. WebRTC employs noise and echo

suppression algorithms to enhance the quality of

the sound captured by the devices that are being

used.

WebRTC handles NAT transversal using the ICE

(Interactive Connection Establishment [5])

protocol being able to transverse any NAT if a

STUN (Session Traversal Utilities for NAT [6])

and TURN (Transversal Using Relays around

NAT) servers are used. A STUN server is used

by an endpoint to learn its own public Ip address

and works as shown in the Figure 3.

3

Figure 3 - STUN server [7]

A STUN server is just a tool used to generate the

ICE candidates used by ICE protocol and has no

part in the media exchange. The ICE candidates

gathered by an endpoint must be sent to the other

endpoint using a signaling server. An ICE

candidate represents a transport address in

which an endpoint is willing to receive a stream

from the peer.

In the cases in which both users are employing

symmetric NAT’s a TURN server is required and

in this case the TURN server takes part in the

media flow as shown in the figure below.

Figure 4 - TURN server [7]

In the scheme of Figure 4 the TURN server

receives the traffic from client A and redirects it to

client B, this works because clients A and B

started the communication with the server. The

port that is referred in the packet received is then

used to relay the stream that is being sent by the

peer. Using a TURN server is very expensive and

most only be used when the is no other

alternative.

WebRTC implements a new extension to the ICE

protocol called Trickle ICE [8], this new extension

allows the ICE candidates to be sent to the peer

as they are discovered. It also allows the peer to

test them as they are being received and to start

streaming as soon as a working one is found.

This implementation vastly reduces the setup

time for the call creating a better user experience.

3 System

3.1 System requirements
The system must implement the following

requirements to fully reach the goal of integrating

the POTS/VoIP technology with the Web.

• Authentication using the OAuth2.0

framework [9];

• Communicate between WebRTC, VoIP and

POTS

• Grant the confidentiality of all web

communications;

• Voicemail on the browser

• Aggregate all SIP numbers associated with

a user;

• Deliver a way to search for ways to contact a

user;

• Support multiple sessions allowing for a

single user to use the system in more than

one device at the same time;

• Permitting a user to answer a call in any of

the devices that he has connected.

• Give a basic framework to create IVR menus

and integrate them with web technologies

3.2 System architecture

Autenticação

Servidor Web

HTTPS

Aplicação

Web

SIP/SRTP

HTTPS

Asterisk PBX
SIP/SRTP

IVR e

Servidor

Multimédia

SIP/RTP

Sistema de

 Ficheiros

Base de Dados

MongoDB

Directório

HTTPS

Browser

do cliente

Sistemas de Informação

Sistema

Existente
SIP

Sistema WebRTC

Figure 5 - General system architecture

4

The system is composed of a Web server, a

database, an Asterisk PBX server, an IVR server,

and a multimedia server as shown in Figure 5.

This system was designed to run simultaneously

with the existing infrastructure using the Asterisk

PBX to communicate with the existing system.

3.2.1 Web Server

The web server is a very important component of

the system having direct contact with almost

every other component being the only exception

the IVR system. This importance comes from the

following 3 functions that the server does:

• Serve a WebApp that gives a way for the

users to interact with the system;

• Provides a channel for the exchange of SDP

offers/answers and ICE candidates allowing

the establishment of a call;

• Configures the Asterisk PBX adding the

users to the configuration file and loading the

file right after.

The web server also does its more traditional role

of providing an API to the WebApp. This API has

routes to search for other users, establish

WebRTC calls, associate SIP numbers with the

user and leave voice/video messages.

3.2.2 WebApp

The WebApp provided by the server gives the

users a way to do WebRTC calls and SIP calls to

other users and extensions. The application also

provides the users an interface to record

audio/video messages, preview them and send

them to other users. The WebApp also allows the

user to search for other users and called them

directly from the search results.

3.2.3 Asterisk PBX

The Asterisk PBX serves as a proxy between the

users and the POTS/VoIP system, it allows the

client applications to register directly to receive

calls in their devices. The authentication

credentials are set by the web server whenever a

new user starts using the system, a personal

extension to receive calls is also set. This setup

is done by simply changing the configuration files

and reloading the relevant modules.

3.2.4 IVR and media server

The IVR server communicates with the web

server through WebSocket’s using the SIP

protocol. From the point of view of the Asterisk

PBX the IVR server is just a normal SIP client that

registers like the others, allowing the server to

receive calls.

The IVR server also communicates with the

media server Kurento as a controller allowing the

media server to connect directly to Asterisk. The

IVR system passes the SDP offers that it receives

from Asterisk to Kurento and then the answer

from Kurento to Asterisk. After the connection is

established the IVR server controls the media

that the media server plays in accordance with

the menu that it has programed.

3.2.5 Database models

The database holds all the user data like

associated numbers, active sessions, personal

info and recordings metadata. This database is

only accessible through the web server and the

IVR server not allowing direct access by the

clients or any client side executed code.

4 Implementation

4.1 Web Server
The web server was implemented using NodeJS,

the language was chosen due to its simplicity and

large repository of packets that make web

development very easy. It also makes it easier to

develop the JavaScript web application since the

syntax it’s the same.

The packets used in the server were the

following:

• Express;

• SocketIO;

• Cookie-Session;

• Body-Parser;

• Multer;

• Simple-Oauth2;

• Random-ID;

• Mongoose;

• Memory-Cache.

The packet Express is the main framework of the

web server used to configure all the HTTP routes

and is also responsible for preprocess the

requests received by parsing the JSON content.

SocketIO is the framework for the WebSocket, its

attached to the same server as the Express

 o

 tili a or

 m ro

 ra a

Figure 6 - UML representing the database

5

packet because of that they share the port.

SocketIO is used to set the routes for the

WebSocket and for sending messages to users

or groups of users. Cookie-Session is used to set

and sign session cookies in the requests. Body-

Parser is used in paired with Express to process

the incoming requests. Multer is responsible for

handling the files uploaded using to upload

records. Simple-Oauth2 is used to simplify the

use of the OAuth2.0 framework. Random-ID is

used to create random ID’s for the sessions and

passwords for the Asterisk server. Mongoose is

used to interact with MongoDB, acting as

interface to create, edit and remove entries from

the database. Finally, Memory-Cache is used to

store temporary values in the server for use in

future requests.

4.1.1 Direct browser to browser call

The Webserver implements the signaling

process of a webRTC call using SocketIO, the

process can be summarized in the following

steps:

1. A user wants to call other and sends a HTTP

request to the server containing the

username of the called user;

2. The server receives the intention to start a

call and learns the name of the caller from the

database, after that it stores a call request

object in the cache. This object represents

the intent of user A call user B. After this the

server uses SocketIO to notify all devices of

the called user sending a callRequestID and

the caller full name.

3. The user that receives the call can either

accept or decline the call. If the user accepts

it send a request with the callRequestID and

the identifier (in this system) of the answering

device.

4. The server retrieves the callRequest object

using the callRequestID and checks if all if

correct user responded. If everything is ok

the server creates a “room” using SocketIO

to serve as a signaling channel for the call.

5. The server maintains the channel until the

end of the call destroying it after.

After the establishment of the communication

channel the users can start to send SDP

offers/answers and ICE candidates. The server

has no part in the resulting connection since the

data will flow directly from one WebRTC client to

another. The channel is only maintained to signal

the end of a call or any necessary changes.

4.2 Web Application
The web application was made using JavaScript

and HTML with help of the AngularJS framework.

The core packets used in the web application

were the following:

• AngularJS

• JQuery

• JSSIP

• SocketIO

• Adapter.js

As said earlier AngularJS is used in the app as

the main framework, it allows the use of AJAX

(Asynchronous Javascript and XML) to be used

in very simple way by creating routes for the

application using ngRoute that’s one of many

modules delivered by Angular. The use of AJAX

is vital for the since the JavaScript code that

controls the calls must stay running without

interruptions. The packet jQuery needs to be

loaded to ensure the correct behavior of

AngularJS.

JSSIP is the packet responsible for managing all

SIP connections with asterisk. It registers the

application so that it can receive and make calls

and handles all the low level signaling required

giving the programmer a comprehensive API to

control the calls in an easy way.

SocketIO like in the server is used to

receive/send information to the server in an

asynchronous way giving the application a way

to receive information from the server at any

time.

Adapter.js is shim library that gives the

application the capacity of working with the

WebRTC implementations of several browsers

and several versions of the same browser.

4.3 Asterisk Server
The Asterisk server has several modules that

must be configured to setup the system like the

integrated HTTP server, SIP channel driver, RTP

handlers and the dial plan.

The integrated HTTP server is used to host the

WebSocket that works as a signaling interface for

the web clients it can be used both in the secure

version WSS and the unsecure WS. The only

requirement to use the secure version is

configuring the HTTPS protocol in the web

server.

6

The RTP configuration must be changed so that

the server uses the ICE protocol and a defined

STUN server.

The SIP channel driver chosen was PJSIP this

module configures the transport types possible,

the authentication points and AOR’s that then

associates with endpoints. There is no fixed

association between endpoints and transport

layers so that an endpoint can be created using

any of the transport types.

The dial plan defines all extensions in the system

and so one extension must be associated with

every user allowing calls to be received by any

user. The dial plan must also explicitly be

configured to make Asterisk contact all active

endpoints associated with a given user when

there is an incoming call.

4.4 IVR Server
This server was implemented using NodeJS to

maintain the coherency across the system.

The packets used for this server were:

• SIPJS

• Kurento Client

The SIPJS module is used to connect the IVR

server with the Asterisk server using

WebSocket’s. The module also handles the SIP

communication allowing the server to answer

calls while forwarding the SDP description to the

multimedia server and the SDP answer to the

Asterisk server. This module also receives and

processes the DTMF tones allowing an IVR to be

built based on this input.

The Kurento client library is used to control the

multimedia server (Kurento), this control is made

through a WebSocket that allows the creation of

endpoints in the server for communication and for

playing and recording media.

The server delivers an effective way of

developing IVR menus that far surpass the usual

Asterisk ones allowing developers to link it

directly with any kind of database which allows an

easy integration with web technologies which in

turn opens the possibility to deliver complex

services using IVR menus.

4.5 Media Server
The Kurento media server was used to record

and play audio for all SIP devices. The setup of

this service is very easy it only requires an

installation that can be done directly from the

repositories of a Linux distribution like Ubuntu.

The server will work right out of the box without

any special configuration nevertheless it will be

required an RSA key pair and some changes on

the config file to enable WSS.

5 Discussion

5.1 Security

5.1.1 Communications via Webserver

All the communications between the users and

the web server and the users are encrypted using

TLS (Transport Layer Security [10]). This used to

protect both the HTTP server and the WebSocket

implementing HTTPS and WSS. This ensures the

integrity and confidentiality of all messages

exchanged between the server and the users.

With the use of HTTPS, the cookie can safely

contain the identifier of the user in the system

without the risk of it being used by a malicious

user to impersonate another person. For

additional security the server also signs its

cookies so that they can’t be easily forged.

Figure 7 - WebRTC protocol stack [11]

The use of WSS protects the signaling of all calls

made from a browser to another, the level of

security is the same of the HTTPS server since

they share the same transport layer, in fact the

difference between the two lies only on the

application layer.

The media streams exchanged on a direct

communication between browsers are encrypted

using DTLS (Datagram Transport Layer Security)

below SRTP and SCTP this ensures integrity and

a very good level of confidentiality but due to a

lack of header encryption in the SRTP header is

still possible to see that a call is happening and

the IP addresses of the users [11], as it can be

seen in Figure 7. The exposure of the IP address

can lead to the identification of the two parties

that are engaging in the call, despite this the

content of the call will remain confidential until

there is a way to break the encryption used.

7

5.1.2 Authentication on the Webserver

The authentication on the webserver is made

using the OAusth2.0 framework. This framework

gives the webserver both the means to

authenticate a user and a way to obtain user data

in a secure way. A success authentication

process results in the creation of a session in the

webserver where the username is related with a

generated identifier. The identifier is set in the

signed cookie of the session and used as way to

retrieve the session from the database. This

schema allows a user to have more than one

session at time if he repeats the authentication

process in another device/browser. The sessions

of a user are erased when he logs out or when it

surpasses its set lifetime. If a user identifier gets

exposed, it will only grant access to the system

during the rest of its lifetime being this time

impossible to extend.

5.1.3 Communication via Asterisk

The communication with Asterisk can be

accomplished either via UDP or TCP using a

WebSocket. Both methods have been configured

in two ways a secure and an unsecure one. The

UDP configuration uses one port to receive

standard non-encrypted SIP messages and

another to received messages encrypted with

TLS. On the WebSocket side we also have an

implementation of the WS protocol with the

messages exposed in plain-text and a WSS

implementation with TLS encryption protecting

the all messages.

The endpoints defined within Asterisk can chose

use encryption for the sessions or not. For all

WebRTC communications the use of DTLS is

mandatory and so the endpoints were configured

to use it. To protect the signaling the transport

used must be WSS to protect integrity and

confidentiality of a future session.

UDP clients using the secure transport layer can

also encrypt their media session using a

cryptographic attribute in SDP protocol [12]. In

conjunction with the TLS encryption that protects

the SIP/SDP messages communications over

UDP can achieve integrity and confidentiality.

The unprotected versions of the protocols were

implemented to achieve compatibility with as

much devices as possible, despite this their use

must be kept to bare minimum and only within

secure networks.

5.1.4 Authentication on Asterisk server

The authentication in Asterisk is made using the

credentials delivered by the webserver using its

API. The credentials consist of a username that

it’s the username of the user in the system and a

password generated by the webserver. Asterisk

allows the same user the possibility of

authenticating more than one device using the

AOR that works as an identifier service for

multiple devices. The separation of credentials

makes the overall system more secure. The

OAuth2.0 username and password are used only

once per session to acquire the Asterisk

credentials and if for some reason these

credentials are exposed only the Asterisk part of

the system is exposed and so it can be fixed by

changing periodically and automatically the

Asterisk password which is easy because its

value is not known by the user.

5.2 NodeJS IVR server Vs Asterisk
The Asterisk as most of the IP-PBX servers

provides a framework to develop IVR menus,

unfortunately these menus are limited and use

special language only defined in the scope of the

server. Using Asterisk only some Database’s can

be used and all of them are SQL databases, this

fact combining with the complexity of using this

inside the Asterisk configuration files.

On the other hand, the NodeJS IVR server can

use almost any database both SQL and NoSQL.

The use of JavaScript language allows the

development of menus that can be easily

integrated with any webservice. The possibility of

integrating webservices with IVR menus allows

the possibility to create more dynamic and

powerful menus.

5.3 Directory
This system asks the user for input to set is

attributed SIP numbers/extensions this method is

both inconvenient for the user and unsecure for

the system. Its inconvenient because it asks for

something that should be acquirable using the

OAuth2.0 framework and its unsecure because

nobody certifies that the user claims are valid.

There should be a way to retrieve the SIP

numbers from the central system, with the

permission of the user, using OAuth2.0.

5.4 Management and maintenance
This system was all written using the same

programing language, JavaScript. This makes

the maintenance of the system easier since it is

possible for a programmer to handle all system

just by knowing JavaScript.

8

The management of the Asterisk server is a bit

trickier than the rest since its knowledge in SIP

and several other auxiliary protocols is needed to

fully understand how an Asterisk server must be

configured. Despite this the entire philosophy of

this project was oriented to take work away from

the asterisk server to reduce the complexity of the

configuration files.

6 Conclusions
This project was able to integrate WebRTC

technology with exiting POTS/VoIP networks

being able to deliver a real phone experience

through the browser. The was also able to use

other technologies like OAuth2.0 to authenticate

clients and retrieve data.

Using the multimedia server Kurento this project

was also capable of creating IVR menus using

NodeJS allowing the integration of web

technologies with VoIP which translates in an

enhancement of the user experience since we

can deliver a more personalized IVR for the

clients/users.

The web application developed as part of the

project can run in the Google Chrome and Mozilla

Firefox browsers both in the mobile and desktop

versions. Since these browsers correspond to the

first and third most used browsers with a

combined market share around 65% (during the

month of February of 2018, data from the website

NetMarketShare) it’s safe to say that the

application will be available to most people.

There are alternatives to create redundancy

systems to cover a failure in the POTS system

like softphones for example. But the use of a

softphone requires individual installation and

configuration in each device, which can be hard

troublesome especially when using secure

connections, all these can cause problems to less

experienced users. The Web Application can be

executed in the most popular browsers without

any installation or configuration, the only

requirement is a simple login into on a familiar

website. With this the application can fetch all the

data it needs to work.

Using a web application instead of a softphone

gives more options to do further improvement

and expansion of the system since it as full

control over the interface offered to the user.

7 Bibliography

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo,

A. Johnston, J. Peterson, M. R. Sparks,

Handley and E. Schooler, "RFC3261 - SIP:

Session Initiation Protocol," June 2002.

[Online]. Available:

https://tools.ietf.org/html/rfc3261. [Accessed

13 April 2018].

[2] M. Handley, V. Jacobson and C. Perkins,

"RFC 4566 - SDP: Session Description

Protocol," July 2006. [Online]. Available:

https://tools.ietf.org/html/rfc4566. [Accessed

13 April 2018].

[3] H. Schulzrinne, S. Casner, R. Frederick and

V. Jacobson, "RFC 3550 - RTP: A Transport

Protocol for Real-Time Applications," July

2003. [Online]. Available:

https://tools.ietf.org/html/rfc3550. [Accessed

13 April 2018].

[4] M. Baugher, D. McGrew, M. Naslund, E.

Carrara and K. Norrman, "RFC 3711 - The

Secure Real-time Transport Protocol

(SRTP)," IETF, March 2004. [Online].

Available: https://tools.ietf.org/html/rfc3711.

[Accessed 13 April 2018].

[5] J. Rosenberg, "RFC 5245 - Interactive

Connectivity Establishment (ICE): A

Methodology for Network Address Translator

(NAT) Traversal for Offer/Answer Protocols,"

April 2010. [Online]. Available:

https://tools.ietf.org/html/rfc5245. [Accessed

13 April 2018].

[6] J. Rosenberg, R. Mahy, P. Matthews and D.

Wing, "RFC 5389 - Session Traversal

Utilities for NAT (STUN)," October 2008.

[Online]. Available:

https://tools.ietf.org/html/rfc5389. [Accessed

26 April 2018].

[7] A. Prokop, "Understanding WebRTC Media

Connections: ICE, STUN and TURN," 11

August 2014. [Online]. Available:

https://www.avaya.com/blogs/archives/2014

/08/understanding-webrtc-media-

connections-ice-stun-and-turn.html.

[Accessed 26 April 2018].

[8] E. Ivov, E. Rescorla, J. Uberti and P. Saint-

Andre, "draft-ietf-ice-trickle-20 - Trickle ICE:

9

Incremental Provisioning of Candidates for

the Interactive Connectivity Establishment

(ICE) Protocol," 9 April 2018. [Online].

Available: https://tools.ietf.org/html/draft-ietf-

ice-trickle-15. [Accessed 13 April 2018].

[9] D. Hardt, "RFC 6749 - The OAuth 2.0

Authorization Framework," October 2012.

[Online]. Available:

https://tools.ietf.org/html/rfc6749. [Accessed

2018 April 18].

[1

0]

T. Dierks and E. Rescorla, "RFC 5246 - The

Transport Layer Security (TLS) Protocol

Version 1.2," August 2008. [Online].

Available: https://tools.ietf.org/html/rfc5246.

[Accessed 3 May 2018].

[1

1]

NTT Communications, "A Study of WebRTC

Security," [Online]. Available: http://webrtc-

security.github.io/. [Accessed 19 April 2018].

[1

2]

F. Andreasen, M. Baugher and D. Wing,

"RFC 4568 - Session Description Protocol

(SDP) Security Descriptions for Media

Streams," July 2006. [Online]. Available:

https://tools.ietf.org/html/rfc4568. [Accessed

23 April 2018].

[1

3]

A. Freier, P. Karlton and P. Kocher, "RFC

6101 - The Secure Sockets Layer (SSL)

Protocol Version 3.0," August 2011. [Online].

Available: https://tools.ietf.org/html/rfc6101.

[Accessed 18 April 2018].

[1

4]

E. Rescorla and N. Modadugu, "RFC 6347 -

Datagram Transport Layer Security Version

1.2," January 2012. [Online]. Available:

https://tools.ietf.org/html/rfc6347. [Accessed

19 April 2018].

